Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander J. Norquist, ${ }^{\text {a }}$
Michael B. Doran ${ }^{\text {b }}$ and Dermot O'Hare ${ }^{b_{*}}$

${ }^{\text {a }}$ Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and ${ }^{\mathbf{b}}$ Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail:
dermot.ohare@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.037$
$w R$ factor $=0.097$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left(\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$: an organically templated uranium sulfate with a novel layer topology

The title compound, poly $\left[N, N, N^{\prime}, N^{\prime}\right.$-tetramethylpropane-1,3-diaminium [aquatetraoxotri- μ_{3}-sulfatodiuranate(VI)]], $\left(\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, contains two-dimensional $\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ layers that are unprecedented in uranium chemistry. The layers in this compound are separated by $\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{~N}_{2}^{2+}$ cations, forming the basis of an extensive hydrogen-bonding network. An independent intralayer hydrogen-bonding network is also observed, involving water molecules bound directly to a uranium centre.

Comment

Hydrothermal actinide chemistry has been the focus of intense interest in recent years. Great structural diversity is observed in actinide sulfates (Doran et al., 2002; Norquist et al., 2002; Thomas et al., 2003), phosphates (Doran, Stuart et al., 2004; Burns et al., 2004), iodates (Bean et al., 2004), selenites (Almond et al., 2004), carbonates (Kubatko \& Burns, 2004), molybdates (Krivovichev et al., 2005) and chromates (Sykora et al., 2004). These studies have led to the formation of a host of novel inorganic structures. Several strategies are employed for the formation of new structure types, including the use of alternate coordination polyhedra (Kubatko \& Burns, 2004; Sykora et al., 2004), inclusion of organic components into the framework (Kim et al., 2003), systematic exploration of reaction conditions (Norquist et al., 2003) and use of varied organic amines (Doran, Norquist et al., 2004). The last approach is utilized in this study for the formation of an organically templated uranium sulfate with a novel layer

Figure 1

View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x-1, y, z$; (iii) $1-x$, $1-y, 2-z$.]

Received 3 March 2005 Accepted 29 March 2005 Online 9 April 2005

Figure 2
Layer structure in USO-30. Green pentagonal bipyramids and blue tetrahedra represent $\left[\mathrm{UO}_{7}\right]$ and $\left[\mathrm{SO}_{4}\right]$, respectively.
topology. This compound, $\left[\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{~N}_{2}\right]\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (I), is denoted USO-30 (uranium sulfate from Oxford).

(I)

Two unique uranium centres are present in USO-30. Both U 1 and U 2 are seven-coordinate (Fig. 1), in a pentagonal bipyramidal geometry (Table 1). Two short 'uranyl' bonds to axial oxide ligands are observed for each uranium environment, with distances that range from 1.754 (5) to 1.770 (5) Å, which are close to the average reported value of 1.758 (3) \AA (Burns et al., 1997). The $\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 2$ and $\mathrm{O} 8-\mathrm{U} 2-\mathrm{O} 9$ bond angles are close to 180°, with values of 179.4 (2) and 178.5 (2) ${ }^{\circ}$. Each of the five equatorial coordination sites around U1 is occupied by O atoms that are bonded to sulfur centres. Three of these O atoms, O 5 , O 6 and O 7 , bridge to different $\left[\mathrm{SO}_{4}\right.$] tetrahedra, while O 3 and O 4 bridge to the same sulfur centre, creating a shared edge between the $\left[\mathrm{SO}_{4}\right]$ and $\left[\mathrm{UO}_{7}\right]$ poly-

Figure 3
Three-dimensional packing of USO-30. Green pentagonal bipyramids and blue tetrahedra represent $\left[\mathrm{UO}_{7}\right]$ and $\left[\mathrm{SO}_{4}\right]$, respectively. Template H atoms have been omitted for clarity.
hedra. The result of this shared edge is an elongation of the $\mathrm{U} 1-\mathrm{O} 3$ and $\mathrm{U} 1-\mathrm{O} 4$ bond lengths [2.470 (5) and 2.441 (5) \AA] with respect to the $\mathrm{U} 1-\mathrm{O} 5, \mathrm{U} 1-\mathrm{O} 6$ and $\mathrm{U} 1-\mathrm{O} 7$ lengths [2.333 (5) -2.373 (5) A $]$. A contraction of the O3-U1-O4 bond angle, with respect to the other equatorial bond angles, is also observed. The $\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 4$ angle is $57.28(16)^{\circ}$, while the other four $\mathrm{O}_{\mathrm{eq}}-\mathrm{U} 1-\mathrm{O}_{\mathrm{eq}}$ bond angles range between $72.00(16)$ and $78.96(17)^{\circ}$. The equatorial coordination sites of the second unique uranium environment, U 2 , are occupied by four bridging O atoms, with distances ranging between 2.337 (5) and 2.367 (5) Å, and a bound water molecule, which exhibits a $\mathrm{U}-\mathrm{O}_{\text {water }}$ distance of 2.522 (5) \AA. The assignment of the bound water molecule was based on hydrogen-bonding interactions. Three distinct sulfur environments are observed in USO-30, each of which is at the centre of an [SO_{4}] tetrahedron. Each sulfur centre is bound to one terminal O atom and three O atoms that bridge to uranium centres. The $\mathrm{S}-$ $\mathrm{O}_{\text {bridging }}$ distances range between 1.461 (5) and 1.509 (5) Å, while the $\mathrm{S}-\mathrm{O}_{\text {terminal }}$ distances range from 1.437 (6) to 1.440 (5) Å.

The presence of numerous shared O atoms, between $\left[\mathrm{UO}_{7}\right]$ and $\left[\mathrm{SO}_{4}\right]$ polyhedra, results in the formation of an inorganic structure that extends in two dimensions (Fig. 2). This layer topology is, to the best of our knowledge, unprecendented in uranium chemistry. Two distinct one-dimensional chains are observed, both of which contain a $\left[\mathrm{UO}_{2}\left(\mathrm{SO}_{4}\right)_{3 / 3}\right]$ backbone. This chain structure is well known in uranium chemistry (Brandeburg \& Loopstra, 1973; Zalkin et al., 1978; Serezhkin et al., 1981; Doran et al., 2003). In each chain, three of the five equatorial coordination sites surrounding both U1 and U2 participate in chain construction. The other two equatorial sites contain O atoms that are not involved in chain propagation. The two non-backbone sites in the chain containing U1 are occupied by a single $\left[\mathrm{SO}_{4}\right]$ tetrahedron, containing S 1 , which shares a common edge with the $\mathrm{U} 1\left[\mathrm{UO}_{7}\right]$ pentagonal bipyramid. The same coordination sites on the chain that contains U2 are occupied by one bound water molecule and one O atom that is part of the aforementioned S 1 sulfate tetrahedron; the result is the formation of the layers shown in Fig. 2.

The bound water molecule on U2 acts as a hydrogen-bond donor in USO-30. The acceptors are O3 and O4, resulting in intralayer hydrogen bonding. The orientations of successive bound water molecules adopt an 'up-down-up' motif. The
interlayer spacing is occupied by the protonated amines, which also act as hydrogen-bond donors. The orientation of these cations is shown in Fig. 3. Hydrogen bonding details are listed in Table 2.

Experimental

$\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(0.2767 \mathrm{~g}, 0.653 \times 10^{-3} \mathrm{~mol}\right), \mathrm{H}_{2} \mathrm{SO}_{4}(0.3394 \mathrm{~g}$, $\left.3.46 \times 10^{-3} \mathrm{~mol}\right), \quad N, N, N^{\prime} N^{\prime}$-tetramethyl-1,3-propanediamine $\left(0.1317 \mathrm{~g}, 1.01 \times 10^{-3} \mathrm{~mol}\right)$ and water $\left(1.0557 \mathrm{~g}, 58.7 \times 10^{-3} \mathrm{~mol}\right)$ were placed in a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h , and then slowly cooled to 297 K over an additional period of 24 h . The autoclave was opened in air and the products recovered by filtration. A yield of 87%, based on uranium, was observed. USO-30 was characterized using several techniques. Through the use of IR spectroscopy, bands from both the organic and the inorganic components of USO- 30 were observed. A broad band centred at $3400 \mathrm{~cm}^{-1}$, corresponding to the symmetric stretch of the bound water, was present. Bands at 3154 and $1620 \mathrm{~cm}^{-1}$ correspond to the $\mathrm{N}-\mathrm{H}$ stretching and bending modes, while $\mathrm{C}-\mathrm{H}$ bands were observed at 1464 and $1482 \mathrm{~cm}^{-1} . \mathrm{C}-\mathrm{N}$ stretching modes were observed around $1230 \mathrm{~cm}^{-1}$, while $\mathrm{S}-\mathrm{O}$ and uranyl bands were observed at 1100 , and 930 and $942 \mathrm{~cm}^{-1}$, respectively. Analysis found: N 2.87, C 8.69, H 2.15, S 9.87, U 48.13\%; calculated: N 2.86, C 8.59 , H $2.25, \mathrm{~S} 9.82$, U 48.67%. The thermal stability of USO-30 was probed using thermogravimetric analysis. A 1.0% weight loss was observed between 443 and 503 K , which corresponds to loss of the bound water molecules (calculated 1.8\%). Template decomposition begins at 573 K , and is soon followed by the breakdown of the inorganic layers. The material calcines to UO_{2} by 1273 K , as determined using powder X-ray diffraction, with a total weight loss of 43.4% (calculated 44.8%). Structural analysis was conducted at 150 K .

Crystal data

```
\(\left(\mathrm{C}_{7} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\left[\mathrm{U}_{2} \mathrm{O}_{4}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
\(M_{r}=978.51\)
Triclinic, \(P \overline{1}\)
\(a=6.7861\) (1) A
\(b=8.5143\) (1) A
\(c=19.0442(3) \AA\)
\(\alpha=88.6230\) (9) \({ }^{\circ}\)
\(\beta=81.6364\) ( 8\()^{\circ}\)
\(\gamma=84.8577(6)^{\circ}\)
\(V=1084.20(3) \AA^{3}\)
```


Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.053, T_{\text {max }}=0.064$
9107 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.097$
$S=0.91$
4422 reflections
281 parameters
H-atom parameters constrained
Chebychev polynomial (Watkin,
1994; Prince, 1982) with five

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.997 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4635 \\
& \quad \text { reflections } \\
& \theta=5-27^{\circ} \\
& \mu=15.29 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.35 \times 0.18 \times 0.18 \mathrm{~mm} \\
& \\
& 4907 \text { independent reflections } \\
& 4422 \text { reflections with } I>3 \sigma(I) \\
& R_{\text {int }}=0.03 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-11 \rightarrow 11 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

U1-O1	1.758 (5)	S1-O15	1.437 (6)
U1-O2	1.754 (5)	S2-O5	1.469 (5)
U1-O3	2.470 (5)	$\mathrm{S} 2-\mathrm{Ob}^{\text {i }}$	1.497 (5)
U1-O4	2.441 (5)	$\mathrm{S} 2-\mathrm{O} 7^{\text {ii }}$	1.487 (5)
U1-O5	2.333 (5)	S2-O16	1.438 (5)
U1-O6	2.360 (5)	S3-O12 ${ }^{\text {ii }}$	1.482 (5)
U1-O7	2.373 (5)	S3-O13 ${ }^{\text {iii }}$	1.480 (5)
U2-O8	1.765 (5)	S3-O14	1.492 (5)
U2-O9	1.770 (5)	S3-O17	1.440 (5)
$\mathrm{U} 2-\mathrm{O} 10$	2.522 (5)	N1-C1	1.512 (10)
U2-O11	2.361 (5)	N1-C4	1.501 (10)
U2-O12	2.342 (5)	N1-C5	1.485 (10)
U2-O13	2.367 (5)	N2-C3	1.507 (9)
U2-O14	2.337 (5)	N2-C6	1.507 (10)
S1-O3	1.496 (5)	N2-C7	1.484 (10)
S1-O4	1.509 (5)	C1-C2	1.515 (9)
S1-O11	1.461 (5)	C2-C3	1.541 (10)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 2$	179.4 (2)	O11-U2-O14	138.30 (18)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 3$	92.8 (2)	O12-U2-O14	149.75 (17)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 3$	87.4 (2)	O13-U2-O14	75.94 (17)
O1-U1-O4	88.92 (19)	O3-S1-O4	103.1 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 4$	90.76 (19)	O3-S1-O11	108.2 (3)
O3-U1-O4	57.28 (16)	O4-S1-O11	107.9 (3)
O1-U1-O5	89.3 (2)	O3-S1-O15	112.4 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 5$	90.2 (2)	O4-S1-O15	112.2 (3)
O3-U1-O5	129.16 (17)	O11-S1-O15	112.5 (4)
O4-U1-O5	72.00 (16)	$\mathrm{O} 5-\mathrm{S} 2-\mathrm{Ob}^{\text {i }}$	108.2 (3)
O1-U1-O6	87.57 (19)	$\mathrm{O} 5-\mathrm{S} 2-\mathrm{O} 7{ }^{\text {ii }}$	107.4 (3)
O2-U1-O6	92.5 (2)	$\mathrm{O} 6^{\mathrm{i}}-\mathrm{S} 2-\mathrm{O} 7^{\text {ii }}$	106.3 (3)
O3-U1-O6	151.87 (16)	O5-S2-O16	110.8 (3)
O4-U1-O6	150.78 (16)	O6 ${ }^{\text {i }}$-S2-O16	111.9 (3)
O5-U1-O6	78.96 (17)	$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{S} 2-\mathrm{O} 16$	112.0 (3)
O1-U1-O7	90.7 (2)	$\mathrm{O} 12^{\mathrm{ii}}-\mathrm{S} 3-\mathrm{O} 13^{\text {iii }}$	108.6 (3)
O2-U1-O7	89.9 (2)	O12 ${ }^{\text {ii }}-\mathrm{S} 3-\mathrm{O} 14$	104.6 (3)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 7$	73.82 (17)	O13 ${ }^{\text {iii }}$-S3-O14	108.5 (3)
O4-U1-O7	131.00 (16)	O12 ${ }^{\text {ii }}-\mathrm{S} 3-\mathrm{O} 17$	113.1 (3)
O5-U1-O7	156.99 (17)	O13 ${ }^{\text {iii }}-\mathrm{S} 3-\mathrm{O} 17$	110.3 (3)
O6-U1-O7	78.05 (17)	O14-S3-O17	111.5 (3)
O8-U2-O9	178.5 (2)	U1-O3-S1	98.8 (2)
O8-U2-O10	92.3 (2)	U1-O4-S1	99.7 (2)
O9-U2-O10	87.5 (2)	U1-O5-S2	155.4 (3)
O8-U2-O11	90.5 (2)	U1-O6-S2 ${ }^{\text {i }}$	134.6 (3)
$\mathrm{O} 9-\mathrm{U} 2-\mathrm{O} 11$	90.7 (2)	U1-O7-S2 ${ }^{\text {iv }}$	133.7 (3)
O10-U2-O11	68.36 (18)	U2-O11-S1	155.0 (3)
O8-U2-O12	88.8 (2)	$\mathrm{U} 2-\mathrm{O} 12-\mathrm{S} 3{ }^{\text {iv }}$	144.1 (3)
O9-U2-O12	92.3 (2)	U2-O13-S3 ${ }^{\text {iii }}$	143.7 (3)
O10-U2-O12	140.21 (17)	U2-O14-S3	131.3 (3)
O11-U2-O12	71.85 (17)	C1-N1-C4	111.5 (6)
O8-U2-O13	92.8 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	114.8 (6)
$\mathrm{O} 9-\mathrm{U} 2-\mathrm{O} 13$	86.6 (2)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	110.0 (7)
O10-U2-O13	145.43 (17)	C3-N2-C6	110.0 (6)
O11-U2-O13	145.69 (17)	C3-N2-C7	112.9 (6)
$\mathrm{O} 12-\mathrm{U} 2-\mathrm{O} 13$	74.09 (16)	C6-N2-C7	110.7 (6)
O8-U2-O14	88.6 (2)	N1-C1-C2	113.0 (6)
O9-U2-O14	90.0 (2)	C1-C2-C3	107.7 (6)
O10-U2-O14	70.02 (18)	N2-C3-C2	110.2 (6)
$\begin{aligned} & \text { Symmetry co } \\ & -x+1,-y+1,- \end{aligned}$	$\begin{array}{r} -x+2 \tag{ii}\\ x+1, y, z \end{array}$	$1,-z+1$	$y, z ; \quad$ (iii)

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {ii }}$	1.00	2.01	2.877 (7)	143
$\mathrm{O} 10-\mathrm{H} 2 \cdots \mathrm{O} 4$	1.00	1.84	2.788 (7)	158
$\mathrm{N} 1-\mathrm{H} 21 \cdots \mathrm{O} 6^{\text {v }}$	1.00	2.12	2.850 (8)	128
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 15^{\text {vi }}$	1.00	2.34	2.935 (8)	117
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 17^{\text {vii }}$	1.00	2.21	2.889 (8)	123

Symmetry codes: (ii) $x-1, y, z$; (v) $-x+1,-y+1,-z+1$; (vi) $x-1, y-1, z$; (vii) $x, y-1, z$.

metal-organic papers

The C - and N -bound H atoms were positioned in idealized locations. The water H atoms were positioned geometrically to make plausible $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. All H atoms were refined as riding on their carrier atoms $\left[\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}\right.$ and $\mathrm{O}-\mathrm{H}=1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier atom)]. The highest peak is $1.30 \AA$ from U1 and the deepest hole is $0.99 \AA$ from U1.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for funding.

References

Almond, P. M., Sykora, R. E., Skanthakumar, S., Soderholm, L. \& AlbrechtSchmitt, T. E. (2004). Inorg. Chem. 43, 958-963. Final page number?
Bean, A. C., Scott, B. L., Albrecht-Schmitt, T. E. \& Runde, W. (2004). J. Solid State Chem. 117, 1346-1354
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brandeburg, N. P. \& Loopstra, B. O. (1973). Cryst. Struct. Commun. 2, 243-246.
Burns, P. C., Alexopoulos, C. M., Hotchkiss, P. J. \& Locock, A. J. (2004). Inorg. Chem. 43, 1816-1818.
Burns, P. C., Ewing, R. C. \& Hawthorne, F. C. (1997). Can. Mineral. 35, 15511570.

Doran, M. B., Norquist, A. J. \& O’Hare, D. (2002). Chem. Commun. pp. 29462947.

Doran, M. B., Norquist, A. J. \& O'Hare, D. (2003). Acta Cryst. E59, m373m375.
Doran, M. B., Norquist, A. J., Stuart, C. L. \& O’Hare, D. (2004). Acta Cryst. E60, m996-m998.
Doran, M. B., Stuart, C. L., Norquist, A. J. \& O’Hare, D. (2004). Chem. Mater. 16, 565-566.
Dowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsprot, TN 37663, USA.
Kim, J. Y., Norquist, A. J. \& O’Hare, D. (2003). J. Am. Chem. Soc. 125, $12688-$ 12689.

Krivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Burns, P. C., Armbruster, T. \& Depmeier, W. (2005). Microporous Mesoporous Mater. 78, 209-215.
Kubatko, K-A. H. \& Burns, P. C. (2004). Can. Mineral. 42, 997-1003.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Norquist, A. J., Doran, M. B., Thomas, P. M. \& O'Hare, D. (2003). Inorg. Chem. 42, 5949-5953.
Norquist, A. J., Thomas, P. M., Doran, M. B. \& O’Hare, D. (2002). Chem. Mater. 14, 5179-5184.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Serezhkin, V. N., Soldatkina, M. A. \& Efremov, V. A. (1981). J. Struct. Chem. 22, 451-454.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sykora, R. E., McDaniel, S. M. \& Albrecht-Schmitt, T. E. (2004). J. Solid State Chem. 177, 1431-1436.
Thomas, P. M., Norquist, A. J., Doran, M. B. \& O’Hare, D. (2003). J. Mater. Chem. 13, 88-92.
Watkin D. J. (1994). Acta Cryst. A50, 411-437.
Zalkin, A., Rube, H. \& Templeton, D. H. (1978). Inorg. Chem. 17, 37013702.

